Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present Atacama Compact Array (ACA) Band-3 observations of the protocluster SPT2349−56, an extreme system hosting >10 ultraluminous infrared galaxies (ULIRGs;LIR ≳ 1012L⊙) in a 200 kpc diameter region atz = 4.3, to study its integrated molecular gas content via CO(4–3) and the long-wavelength dust continuum. The ∼30 hr integration represents one of the longest exposures yet taken on a single pointing with the ACA 7 m. The low-resolution ACA data (21 0 × 12 2) reveal a 75% excess CO(4–3) flux compared to the sum of individual sources detected in higher-resolution Atacama Large Millimeter/submillimeter Array (ALMA) data (1 0 × 0 8). Our work also reveals a similar result by tapering the ALMA data to 10″. In contrast, the 3.2 mm dust continuum shows little discrepancy between ACA and ALMA. A single-dish [Cii] spectrum obtained by APEX/FLASH supports the ACA CO(4–3) result, revealing a large excess in [Cii] emission relative to ALMA. The missing flux is unlikely due to undetected faint sources but instead suggests that high-resolution ALMA observations might miss extended and low-surface-brightness gas. Such emission could originate from the circumgalactic medium or the preheated protointracluster medium (proto-ICM). If this molecular gas reservoir replenishes the star formation fuel, the overall depletion timescale will exceed 400 Myr, reducing the requirement for the simultaneous ULIRG activity in SPT2349−56. Our results highlight the role of an extended gas reservoir in sustaining a high star formation rate in SPT2349−56 and potentially establishing the ICM during the transition phase to a mature cluster.more » « lessFree, publicly-accessible full text available March 17, 2026
-
Abstract This paper gives an overview of Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star formation (TEMPLATES), a JWST Early Release Science program that targeted four extremely bright, gravitationally lensed galaxies, two extremely dusty and two with low attenuation, as templates for galaxy evolution studies with JWST. TEMPLATES obtains a common set of spectral diagnostics for these 1.3 ≤z≤ 4.2 galaxies, in particular Hα, Paschenα, and the rest-frame optical and near-infrared continua. In addition, two of the four targets have JWST coverage of [Oiii] 5007 Å and Hβ; the other two targets have JWST coverage of polycyclic aromatic hydrocarbon 3.3μm and complementary Atacama Large Millimeter/submillimeter Array data covering the [Cii] 158μm emission line. The science goals of TEMPLATES are to demonstrate attenuation-robust diagnostics of star formation, map the distribution of star formation, compare the young and old stellar populations, and measure the physical conditions of star formation and their spatial variation across the galaxies. In addition, TEMPLATES has the technical goal to establish best practices for the integral field units within the NIRSpec and MIRI instruments, both in terms of observing strategy and in terms of data reduction. The paper describes TEMPLATES’s observing program, scientific and technical goals, data reduction methods, and deliverables, including high-level data products and data reduction cookbooks.more » « less
-
Abstract We present a sample of 30 massive (log( M * / M ⊙ ) > 11) z = 3–5 quiescent galaxies selected from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey and observed at 1.1 mm with Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations. These ALMA observations would detect even modest levels of dust-obscured star formation, on the order of ∼20 M ⊙ yr −1 at z ∼ 4 at the 1 σ level, allowing us to quantify the amount of contamination from dusty star-forming sources in our quiescent sample. Starting with a parent sample of candidate massive quiescent galaxies from the Stevans et al. v1 SHELA catalog, we use the Bayesian B agpipes spectral energy distribution fitting code to derive robust stellar masses ( M * ) and star formation rates (SFRs) for these sources, and select a conservative sample of 36 candidate massive ( M * > 10 11 M ⊙ ) quiescent galaxies, with specific SFRs >2 σ below the Salmon et al. star-forming main sequence at z ∼ 4. Based on the ALMA imaging, six of these candidate quiescent galaxies show the presence of significant dust-obscured star formation, and thus were removed from our final sample. This implies a ∼17% contamination rate from dusty star-forming galaxies with our selection criteria using the v1 SHELA catalog. This conservatively selected quiescent galaxy sample at z = 3–5 will provide excellent targets for future observations to constrain better how massive galaxies can both grow and shut down their star formation in a relatively short period.more » « less
-
Abstract Recent studies have revealed a strong relation between the sample-averaged black hole (BH) accretion rate (BHAR) and star formation rate (SFR) among bulge-dominated galaxies—i.e., “lockstep” BH–bulge growth—in the distant universe. This relation might be closely connected to the BH–bulge mass correlation observed in the local universe. To further understand BH–bulge coevolution, we present Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) or CO(3–2) observations of seven star-forming bulge-dominated galaxies at z = 0.5–2.5. Using the ALMA data, we detect significant (>3 σ ) CO emission from four objects. For our sample of seven galaxies, we measure (or constrain with upper limits) their CO line fluxes and estimate their molecular gas masses ( M gas ). We also estimate their stellar masses ( M star ) and SFRs, by modeling their spectral energy distributions. Using these physical properties, we derive the gas depletion timescales ( τ dep ≡ M gas /SFR) and compare them with the bulge/BH growth timescales ( τ grow ≡ M star /SFR ∼ M BH /BHAR). Our sample generally has τ dep shorter than τ grow by a median factor of ≳4, indicating that the cold gas will be depleted before significant bulge/BH growth takes place. This result suggests that BH–bulge lockstep growth is mainly responsible for maintaining the mass relation, not creating it. We note that our sample is small and limited to z < 2.5; JWST and ALMA will be able to probe to higher redshifts in the near future.more » « less
-
Abstract Accurate models of the star formation histories (SFHs) of recently quenched galaxies can provide constraints on when and how galaxies shut down their star formation. The recent development of nonparametric SFH models promises the flexibility required to make these measurements. However, model and prior choices significantly affect derived SFHs, particularly for post-starburst galaxies (PSBs), which have sharp changes in their recent SFH. In this paper, we create mock PSBs, then use the Prospector SED fitting software to test how well four different SFH models recover key properties. We find that a two-component parametric model performs well for our simple mock galaxies, but is sensitive to model mismatches. The fixed- and flexible-bin nonparametric models included in Prospector are able to rapidly quench a major burst of star formation, but systematically underestimate the post-burst age by up to 200 Myr. We develop a custom SFH model that allows for additional flexibility in the recent SFH. Our flexible nonparametric model is able to constrain post-burst ages with no significant offset and just ∼90 Myr of scatter. Our results suggest that while standard nonparametric models are able to recover first-order quantities of the SFH (mass, SFR, average age), accurately recovering higher-order quantities (burst fraction, quenching time) requires careful consideration of model flexibility. These mock recovery tests are a critical part of future SFH studies. Finally, we show that our new, public SFH model is able to accurately recover the properties of mock star-forming and quiescent galaxies and is suitable for broader use in the SED fitting community. https://github.com/bd-j/prospectormore » « less
-
Abstract We present the first spatially resolved maps of gas-phase metallicity for two dust-obscured star-forming galaxies atz∼ 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hαand [Nii] emission lines. Empirical optical line calibrations are used to determine that the sources are globally enriched to near-solar levels. While one source shows elevated [N ii]/Hαratios and broad Hαemission consistent with the presence of an active galactic nucleus in a ≳1 kpc region, we argue that both systems have already undergone significant metal enrichment as a result of their extremely high star formation rates. Utilizing Atacama Large Millimeter/submillimeter Array rest-frame 380μm continuum and [Ci](3P2–3P1) line maps we compare the spatial variation of the metallicity and gas-to-dust ratio in the two galaxies, finding the two properties to be anticorrelated on highly resolved spatial scales, consistent with various literature studies ofz∼ 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on ∼kpc scales in extremely dust-obscured systems atz∼ 4 and beyond.more » « less
-
Abstract We present visual classifications of merger-induced tidal disturbances in 143M*∼ 1011M⊙post-starburst galaxies atz∼ 0.7 identified in the Sample. This sample spectroscopically selects galaxies from the Sloan Digital Sky Survey that have stopped their primary epoch of star formation within the past ∼500 Myr. Visual classifications are performed on Hyper Suprime-Cam imaging. We compare to a control sample of mass- and redshift-matched star-forming and quiescent galaxies from the Large Early Galaxy Census and find that post-starburst galaxies are more likely to be classified as disturbed than either category. This corresponds to a factor of times the disturbance rate of older quiescent galaxies and times the disturbance rate of star-forming galaxies. Assuming tidal features persist for ≲500 Myr, this suggests merging is coincident with quenching in a significant fraction of these post-starbursts. Galaxies with tidal disturbances are younger on average than undisturbed post-starburst galaxies in our sample, suggesting tidal features from a major merger may have faded over time. This may be exacerbated by the fact that, on average, the undisturbed subset is fainter, rendering low-surface-brightness tidal features harder to identify. However, the presence of 10 young (≲150 Myr since quenching) undisturbed galaxies suggests that major mergers are not the only fast physical mechanism that shut down the primary epoch of star formation in massive galaxies at intermediate redshift.more » « less
-
Abstract We present structural measurements of 145 spectroscopically selected intermediate-redshift ( z ∼ 0.7), massive ( M ⋆ ∼ 10 11 M ⊙ ) post-starburst galaxies from the SQuIGG L ⃗ E sample measured using wide-depth Hyper Suprime-Cam i -band imaging. This deep imaging allows us to probe the sizes and structures of these galaxies, which we compare to a control sample of star-forming and quiescent galaxies drawn from the LEGA-C Survey. We find that post-starburst galaxies systematically lie ∼0.1 dex below the quiescent mass–size (half-light radius) relation, with a scatter of ∼0.2 dex. This finding is bolstered by nonparametric measures, such as the Gini coefficient and the concentration, which also reveal these galaxies to have more compact light profiles than both quiescent and star-forming populations at similar mass and redshift. The sizes of post-starburst galaxies show either negative or no correlation with the time since quenching, such that more recently quenched galaxies are larger or similarly sized. This empirical finding disfavors the formation of post-starburst galaxies via a purely central burst of star formation that simultaneously shrinks the galaxy and shuts off star formation. We show that the central densities of post-starburst and quiescent galaxies at this epoch are very similar, in contrast with their effective radii. The structural properties of z ∼ 0.7 post-starburst galaxies match those of quiescent galaxies that formed in the early universe, suggesting that rapid quenching in the present epoch is driven by a similar mechanism to the one at high redshift.more » « less
-
Abstract Observations and simulations have demonstrated that star formation in galaxies must be actively suppressed to prevent the formation of overly massive galaxies. Galactic outflows driven by stellar feedback or supermassive black hole accretion are often invoked to regulate the amount of cold molecular gas available for future star formation but may not be the only relevant quenching processes in all galaxies. We present the discovery of vast molecular tidal features extending up to 64 kpc outside of a massivez= 0.646 post-starburst galaxy that recently concluded its primary star-forming episode. The tidal tails contain (1.2 ± 0.1) × 1010M⊙of molecular gas, 47% ± 5% of the total cold gas reservoir of the system. Both the scale and magnitude of the molecular tidal features are unprecedented compared to all known nearby or high-redshift merging systems. We infer that the cold gas was stripped from the host galaxies during the merger, which is most likely responsible for triggering the initial burst phase and the subsequent suppression of star formation. While only a single example, this result shows that galaxy mergers can regulate the cold gas contents in distant galaxies by directly removing a large fraction of the molecular gas fuel, and plausibly suppress star formation directly, a qualitatively different physical mechanism than feedback-driven outflows.more » « less
-
Abstract We describe the Studying Quenching in Intermediate- z Galaxies: Gas, angu L → ar momentum, and Evolution ( SQuIGG L ⃗ E ) survey of intermediate-redshift post-starburst galaxies. We leverage the large sky coverage of the Sloan Digital Sky Survey to select ∼ 1300 recently quenched galaxies at 0.5 < z ≤ 0.9 based on their unique spectral shapes. These bright, intermediate-redshift galaxies are ideal laboratories to study the physics responsible for the rapid quenching of star formation: they are distant enough to be useful analogs for high-redshift quenching galaxies, but low enough redshift that multiwavelength follow-up observations are feasible with modest telescope investments. We use the Prospector code to infer the stellar population properties and nonparametric star formation histories (SFHs) of all galaxies in the sample. We find that SQuIGG L ⃗ E galaxies are both very massive ( M * ∼ 10 11.25 M ⊙ ) and quenched, with inferred star formation rates ≲1 M ⊙ yr −1 , more than an order of magnitude below the star-forming main sequence. The best-fit SFHs confirm that these galaxies recently quenched a major burst of star formation: >75% of SQuIGG L ⃗ E galaxies formed at least a quarter of their total stellar mass in the recent burst, which ended just ∼200 Myr before observation. We find that SQuIGG L ⃗ E galaxies are on average younger and more burst-dominated than most other z ≲ 1 post-starburst galaxy samples. This large sample of bright post-starburst galaxies at intermediate redshift opens a wide range of studies into the quenching process. In particular, the full SQuIGG L ⃗ E survey will investigate the molecular gas reservoirs, morphologies, kinematics, resolved stellar populations, active galactic nucleus incidence, and infrared properties of this unique sample of galaxies in order to place definitive constraints on the quenching process.more » « less
An official website of the United States government
